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Summary

Disordered networks with discrete
signaling are considered a poor
substrate for computation, yet they are
ubiquitous in the brain.
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We show that such large chaotic
o o o) networks can support reliable
state space picture computation, with a surprisingly long
supervised learning with ridge regression loss o .
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Gaussian process (GP) picture
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In particular, we find that

+ chaosinadiscrete signaling network
acts as an effective regularizer,

» richand robust computationis
possible in the chaoticregime and

This kernel function k£ captures how input correlations = - z” map to output correlations ¢, - ¢,
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for all pairs of correlations in a dataset:
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With it, we can quantify the roughness of the network output before
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Discrete signaling is an effective regularizer

continuous neurons discrete neurons
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- Discrete signaling leads to a sharp drop in the kernel function.

- This strong chaos makes trajectories diverge rapidly, but deterministically.
- As aresult, noisy observations are regularized via benign overfitting.
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Chaotic activity provides rich basis of spatiotemporal functions
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« Sub-critical networks have mostly linear kernels.
- Extrapolationinregression tasks is hence limited to slowly-changing functions.
- In contrast, chaotic networks have aricher inductive bias.

At the edge of chaos, input correlations persist over longer timescales
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+ At the edge of chaos, neural networks show critical slowing down.
- Similarly, input correlations also persist on longer timescales.
- This allows the network to maintain accuracy on generalization tasks.
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